July, 2013

Insects

Impacts from urbanization impose stress on the environments of stream invertebrates^{1,2,3}. Stressors of habitat loss, degradation of water quality, and river flow variability are associated with interbasin urban development.

Invertebrate Ecological Significance

Disruption of invertebrate life cycles reduces taxonomic richness^{4,5}. Dysfunctional invertebrate communities impact the stability of aquatic environments^{6,7}. Assessing the health of a river ecosystem is often monitored by assessing stream invertebrate populations and emporal comparisons of invertebrate assemblages reveal positive or negative trends to shape water management policy⁸.

Table 12 lists the orders that are least tolerant to pollution. The current total number of taxa is 105, which is double the number of taxa found in local reference stream data from Bayer et al⁹.

Human Land Use Impact

Figure 27 shows the relative abundance of macroinvertibrates collected in three sections of the Blanco River. This indicates substantial levels of invertebrate biodiversity. High levels of invertebrate biodiversity are usually associated with high habitat heterogeneity¹⁰. Habitats

¹ Palmer, Margaret A., G. E. Moglen, N. E. Bockstael, S. Brooks, J. E. Pizzuto, C. Wiegand, and Keith VanNess. 2002. The Ecological Consequences of Changing Land Use for Running Waters, 102 with a Case Study of Urbanizing Watershed in Maryland. Yale Forestry and Environmental Studies Bulletin: Vol 107:85-113.

² McKinney, M. L. 2002. Urbanization, Biodiversity, and Conservation. BioScience: Vol 52:883-890.

³ Brasher, A. M. D. 2003. Impacts of Human Disturbances on Biotic Disturbances in Biotic Communities in Hawaiian Streams. BioScience: Vol 53:1052-1060.

⁴ Ebersole, J. L., W. J. Liss, and C. A. Frissell. 1997. Restoration of Stream Habitats in the Western United States: Restoration as Reexpression of Habitat Capacity. Environmental Management: Vol 21:1-14.

⁵ Smith, H., and P.J. Wood. 2002. Flow Permanence and Macroinvertebrate Community Variability in Limestone Spring Systems. Hydrobiologia: Vol: 487:45-58.

⁶ Tilman, D. 1999. The Ecological Consequences of Changes in Biodiversity: A Search for General Principles. Ecology: Vol 80:1455-1474.

⁷ Covich, A. P., M. C. Austen, F. Barlocher, E. Chauvet, B. J. Cardinale, C. L. Biles, P. Inchausti, O. Dangles, M. Solan, M. O. Gessner, B. Statzner, and B. Moss. 2004. The Role of Biodiversity in the Functioning of Freshwater and Marine Benthic Ecosystems. BioScience: Vol 54:767-775.

⁸ Barbour, M. T., J. Gerritson, B. D. Snyder and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd Edition. EPA/841/B/98-010. Office of Water, US Environmental Protection Agency, Washington, D.C.

⁹ Bayer, C. W., J. R. Davis, S. R. Twidwell, R. Kleinsasser, G. Linam, K. Mayes, and E. Hornig. 1992. Texas aquatic ecoregion project: an assessment of least disturbed streams (draft). Texas Parks and Wildlife Department, Austin.

¹⁰ Vinson, M. R., and C.P. Hawkins. 1998. Biodiversity of stream insects: variation at local, basin and regional scales. Annual Review of Ecology and Systematics: Vol 43:271-293.

The Blanco Water Atlas

July, 2013

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT TEXAS STATE UNIVERSITY

impacted by increased urbanization often exhibit invertebrate homogenization^{4,11}. The Blanco River's highly diverse invertebrate composition is likely due to minimal impacts from recent and current land use changes and development.

Future management activities critical to maintaining this biodiversity and resulting ecosystem functioning must include land use management strategies that minimize instream water quality degradation.

Table 12Sampled Macroinvertebrate Taxonomic Composition of the BlancoRiver from October 2003-August 2004 (Arsuffi and Pendergrass 2005).

Insects (EPT)	Insects (Diptera)	Insects (Other)	Non-Insects
phemeroptera (mayflies)	Calamoceratidae	Odonata (dragon/damselflies)	Nematamorpha
Ephemeridae	Chironomidae	Calopterygidae	Neg The second
Tricorythidae	Simuliidae	Calopteryx	Nematoda
Tricorythodes	Tabanidae	Hetaerina	
Leptohyphes	Stratiomyidae	Coenagrionidae	Platyhelminthes
Caenidae	Culicidae	Argia	Turbellaria
Caenis	Ceratopogonidae	Enallagma	
Heptageniidae	Tipulidae	Amphiagrion	Annelida
Stenonema	Empididae	Gomphidae	Oligochaeta
Isonychiidae	- mp - monte	Phyllogomphoides	Hirudinea
	Sum=9		HIPHCHICK
Isonychia	Sum=9	Erpetogomphus	
Leptophlebiidae		Libellulidae	Arachnida
Neochoroterpes		Nannothemis	Hydrachnida
Paraleptophlebiidae		Corduliidae	
Thraulodes		Epitheca	Pelecypoda
Choroterpes		Macromia	Corbiculiidae
Traverella		Aeshnidae	
Baetidae			Gastropoda
Fallceon		Coleoptera (beetles)	Lymnaeidae
Procloeon		Elmidae	Planorbidae
Camelobaetidius		Macrelmis	Physidae
Paracloeodes		Neoelmis	agentheses
Baetodes		Stenelmis	Crustracea
Centroptilum		Microcylloepus	Amphipoda
Barbaetis		Rhizelmis	Cambaridae
Callibaetis		Dubiraphia	Conchostraca
Apobaetis		Cylloepus	Cladocera
		Heterelmis	Copepoda
Plecoptera (stoneflies)		Narpus	Cobebona
Perlidae			Sum=16
		Dryopidae	Sum=10
Perlesta (Banks)		Postelichus	
		Helichus	
Trichoptera (caddisflies)		Lutrochidae	
Philopotamidae		Lutrochus	
Chimarra		Gyrinidae	
Dolophilodes		Haliplidae	
Polycentropodidae		Peltodytes	
Polycentropus		Dytiscidae	
Polyplectropus		Celina	
Glossosomatidae		Hydrophilidae	
Anagapetus		Hydrobius	
Hydroptilidae		Berosus	
Hydroptila		Psephenidae	
Ochrotrichia		Ectopria	
Oxyethira			
Neotrichia		Hemiptera (true bugs)	
Mayatrichia		Corinidae	
Hydropsychidae		Trichocorixa (Kirkaldy)	
Cheumatopsyche		Belostomatidae	
		Naucoridae	
Hydropsyche			
Leptoceridae		Ambrysus (Stal)	
Mystacides		Cryphocricos	
Oecetis		Pleidae	
Nectopsyche		Notonectidae	
Helicopsychidae		Veliidae	
Helicopsyche		Rhagovelia (Mayr)	
Hydrobiosidae		Gerridae	
Atopysche			
		Metrobates (Uhler)	
Limnephilidae		Trepohates (Uhler)	
		Macroveliidae	
Sum=39		Macrovelia (Uhler)	
		Megaloptera (dobsonflies)	
		Corvdalus	
		- or ytering	
		I amidantara (matha)	
		Lepidoptera (moths)	
		Pyralidae	
		2000000000	
		Sum=41	

¹¹ Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics: Vol 32:333-365.

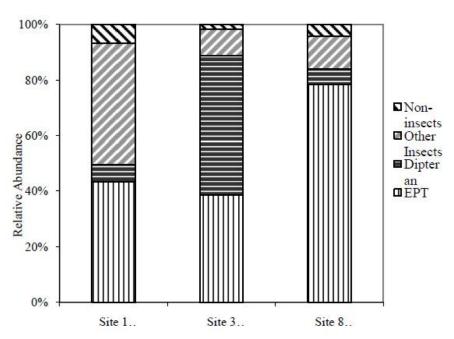


Figure 27 Relative Abundance of Macroinvertebrates Collected from Three Sites (up-, mid-, and downstream) in the Blanco River, January, 2004. Total n = 813 (Arsuffi and Pendergrass 2005).